DRAPER

High Dielectric Constant, Low Loss Additive Manufacturing Materials for RF/Microwave Applications

Caprice Gray, Alexandra Roach, Sarah Rappaport, Andrew Dineen, Reed Irion IMAPS New England May 3, 2016

Why? Additive Manufacturing and Rapid Prototyping

3D Printing and Additive Manufacturing Enables Rapid Design Iteration

But current applications that benefit from this design process are limited by the materials

<u>Aerospace & Aviation parts</u> – light weight, low cost materials, such as seat buckles <u>Medical & Dental</u> – dental and orthopedic implants, visual aids from scanned parts <u>Manufacturing</u> (Mechanical Parts) – alternative to injection molding <u>Bio-manufacturing</u> – printing cells & tissue (more experimental with low modulus materials)

DR **A** PER

Pictures: <u>http://annals.fih.upt.ro/pdf-full/2011/ANNALS-2011-4-27.pdf</u> Information: Piazza, Merissa and Alexander, Serena, "Additive Manufacturing: A Summary of the Literature" (2015). *Urban Publications*. Paper 1319.

Hi k applications at GHz frequencies

- Applications that use high k materials
 - Embedded passive components (R, L, C) 2.5D geometry
 - Waveguides 3D geometry is more can be challenging to manufacture
 - Gradient index lenses complex geometries often requiring multi-material interfaces
- Current waveguide manufacturing techniques and limitations

Approximately 1m

- Typical Materials: brass, copper, silver, aluminum, or any metal that has low bulk resistivity
- Dielectric materials have been used a waveguides for mm wave frequencies, where metal is not a good conductor
- Forming could be greatly simplified if the right materials are available via additive manufacturing tools

Can same technology be placed on a bullet tip? High k material and fine 3D geometry are required

Guided Missile Head http://www.ausairpower.net/APA-Fullback.html guided Missile

Printed High Frequency Devices

- Recent advancements show possibility of high k 2.5D printing
- Materials for 3D printing are in development, but have not been implemented

Ink Jet Printed varactor & phase shifter

A. Friederich, et. al. Int. J. of App. Ceramic Tech., vol. 12, 2015.

Engineered BST lnk with k=129

SLA Printed Radio/Microwave All-Dielectric Frequency Selective Surfaces, U. Texas, El Paso

J. Barton, et. Al., IEEE Trans. on Ant. & Prop., vol. 63, 2015.

Luneburg Lens, U of Az, Polyjet Printer (UV Curable polymer) Fill fraction used for 3D Gradient

M. Liang, et. Al., IEEE Trans. on Ant. & Prop., vol. 62, 2014.

Rapid Prototyping Capabilities

- Four machines
 - 3D Systems Viper (Stereolithography)
 - Epoxy resin material
 - Objet Connex260 (Polyjet Printer)
 - Multi-material printer
 - Stratasys Titan (Fused Deposition Modeler)
 - Polycarbonate material
 - Stratasys Prodigy (Fused Deposition Modeler)
 - ABS material
- Use universal STL file format for import of geometry from 3D modeling software
- Machines run unattended allowing greater throughput and quicker turn around time
- Post processing capabilities including painting, inserting threads (tapping or inserts) and final assembly

For miniature RF devices, need high k, low loss materials

footer

Which Materials Can be 3D Printed?

DRAPER

footer

What are k and tan d from a molecular perspective?

Dielectric Constant (Permittivity) – the tendency for a material to polarize in an electric field

<u>Loss Tangent</u> – the ratio of the apparent power consumed by a material to the real power consumed

Loss is minimized when the time it takes for a for the *dipole moment* of a molecule *reaches equilibrium* with the electric field *quickly*

A material with NO LOSS would switch polarization in sync with the applied electric field

MOLECULAR CONFIGURATION and FREQUENCY play a huge role

DR **A** PER

Molecular Structure of Polymers k and tan δ

Typical Materials Design Strategy: Composites

Designing PMC Materials

Dipole relaxation time

Z. Dang, et. Al., Prog. Mat Sci., vol. 57, 2012.

Choosing a Matrix Material

Choosing a filler and processing method

Filler	Advantage	Major Challenges
Metal	Small amounts can significantly boost dielectric constant	Increases conductivity and loss Dielectric becomes a conductor at high volume fraction
Ceramic	Natural high k, low loss dielectrics	Affects both mechanical and electrical properties \rightarrow Processability is lost at high concentrations
Carbon		Particles tend to agglomerate, lowering percolation threshold
Organics	Mixing and dispersion may be simple, fewer agglomerates	High k organics are loss (more conductive) At high frequency, dielectric constant drops significantly

 Direct compounding – particles tend to agglomerate, surface treatment, such as functionalization only works sometimes

What's out there already?

What's out there already?

What's out there already?

DRAPER

footer

Tridoflex + BaTiO3 fillers

Issues found with BaTiO3 Composites

Particle agglomeration

Possible solutions: Functionalizing particles Furnace treatment prior to mixing Ultrasonic mixing

Air pockets/voids

Possible solutions: Alternative mixing or compounding method Vacuum degassing

Unique issues with nBST Composites

Single Material Demonstrator Results: Molded PMC Waveguide

Created a mold-able material that can be used as a conformal dielectric antenna material

- The material has predictable mm-wave radiation pattern with reasonable gain (10 dB)
- Modeled radiation pattern of material in CST to determine k and tan δ
- The stiffness and other mechanical properties can be tuned by changing the polymer matrix base

Dielectric Antenna

Measured Radiation Pattern (10GHZ)

Simuluated Radiation Pattern (10GHZ)

Conclusions

- Creating a high dielectric constant material with low loss that is also compatible with 3D printing tools would
 - enable rapid design iteration for RF devices
 - access to geometries geometries that are inaccessible with conventional ceramic processing methods
- PMCs are ideal candidates for FDM, SLA and Polyjet tools
- Nobody has yet to succeed in printing a 3D Geometry with k > 10 and $tan \delta < 0.1$ above 1GHz
 - Thermoplastic and photo-cured composites have been made that do exceed these values
- We attempted to make our own material that could be converted into a printed material, but we did not exceed already published values
- Struggles include agglomeration, voids and ceramic phase separation
 - We THINK all are solvable issues with adjustments to chemistry and mixing strategies

D R <mark>/</mark> P E R